Энергия Гиббса. Энергия Гельмгольца. Расчетные формулы энергии гиббса и энергии гельмгольца Физический смысл энергии гельмгольца

Для характеристики процессов, протекающих в закрытых системах, введем новые термодинамические функции состояния: изобарно-изотермический потенциал (свободная энергия Гиббса G) и изохорно-изотермический потенциал (свободная энергия Гельмгольца F).

Для закрытой системы, в которой осуществляется равновесный процесс при постоянных температуре и объеме, выразим работу данного процесса. Которую обозначим А max (поскольку работа процесса, проводимого равновесно, максимальна):

A max =T∆S-∆U

Введем функцию F=U-TS-изохорно-изотермический потенциал, определяющий направление и предел самопроизвольного протекания процесса в закрытой системе, находящейся в изохорно-изотермических условиях и получим:

∆F=∆U-T∆S

Изменение энергии Гельмгольца определяется только начальным и конечным состоянием системы и не зависит от характера процесса, поскольку оно определяется двумя функциями состояния: U и S. Напомним, что от способа проведения процесса при переходе системы из начального в конечное состояние может зависеть величина полученной или затраченной работы, но не изменение функции.

Закрытую систему, находящуюся в изобарно- изотермических условиях, характеризует изобарно-изотермический потенциал G:

G=U+PV-TS=H-TS

∆G=∆H-T∆S

Дифференциал энергии Гиббса для системы с постоянным числом частиц, выраженный в собственных переменных - через давление p и температуру T:

Для системы с переменным числом частиц этот дифференциал записывается так:

Здесь - химический потенциал, который можно определить как энергию, которую необходимо затратить, чтобы добавить в систему ещё одну частицу.

Анализ уравнения ∆G=∆H-T∆S позволяет установить, какой из факторов, составляющих энергию Гиббса, ответственен за направление протекания химической реакции, энтальпийный (ΔH) или энтропийный (ΔS · T).

Если ΔH < 0 и ΔS > 0, то всегда ΔG < 0 и реакция возможна при любой температуре.

Если ΔH > 0 и ΔS < 0, то всегда ΔG > 0, и реакция с поглощением теплоты и уменьшением энтропии невозможна ни при каких условиях.

В остальных случаях (ΔH < 0, ΔS < 0 и ΔH > 0, ΔS > 0) знак ΔG зависит от соотношения ΔH и TΔS. Реакция возможна, если она сопровождается уменьшением изобарного потенциала; при комнатной температуре, когда значение T невелико, значение TΔS также невелико, и обычно изменение энтальпии больше TΔS. Поэтому большинство реакций, протекающих при комнатной температуре, экзотермичны. Чем выше температура, тем больше TΔS, и даже эндотермические реакции становятся осуществляемыми.

Под стандартной энергией Гиббса образования ΔG°, понимают изменение энергии Гиббса при реакции образования 1 моль вещества, находящегося в стандартном состоянии. Это определение подразумевает, что стандартная энергия Гиббса образования простого вещества, устойчивого в стандартных условиях, равна нулю.

Изменение энергии Гиббса не зависит от пути процесса, следовательно можно получать разные неизвестные значения энергий Гиббса образования из уравнений, в которых с одной стороны записаны суммы энергий продуктов реакции, а с другой - суммы энергий исходных веществ.

При пользовании значениями стандартной энергии Гиббса критерием принципиальной возможности процесса в нестандартных условиях принимается условие ΔG° < 0, а критерием принципиальной невозможности - условие ΔG° > 0. В то же время, если стандартная энергия Гиббса равна нулю, это не означает, что в реальных условиях (отличных от стандартных) система будет в равновесии.

Условия самопроизвольного протекания процессов в закрытых системах:

∆G<0, dG<0;

∆F<0,dF<0.

Константа равновесия

Количественной характеристикой химического равновесия является константа равновесия, которая может быть выражена через равновесные концентрации С, парциальные давления P или мольные доли X реагирующих веществ. Для некоторой реакции

соответствующие константы равновесия выражаются следующим образом:

Константа равновесия есть характерная величина для каждой обратимой химической реакции; величина константы равновесия зависит только от природы реагирующих веществ и температуры. Выражение для константы равновесия для элементарной обратимой реакции может быть выведено из кинетических представлений.

Приняв, что V 1 = V 2 , можно записать:

Таким образом, константа равновесия есть отношение констант скорости прямой и обратной реакции. Отсюда вытекает физический смысл константы равновесия: она показывает, во сколько раз скорость прямой реакции больше скорости обратной при данной температуре и концентрациях всех реагирующих веществ, равных 1 моль/л.

Направление любого процесса определяется соотношением энтальпийного ∆ r Н и энтропийного Т r S факторов реакции. Самопроизвольному протеканию реакции способствуют значение ∆ r Н Т < 0 (стремление системы к упорядоченности, сопровождаемое уменьшением ее внутренней энергии) и значение ∆ r S Т > 0 (стремление системы к хаотичности, неупорядоченности как более термодинамически вероятному состоянию). Функциями состояния системы, учитывающими совместное влияние этих факторов, являются энергия Гиббса, или свободная энергия G = H TS , и энергия Гельмгольца F = U ТS.

Уменьшение энергии Гиббса химической реакции

r G Т = (∆ r H Т T r S Т ) < 0 (1.7)

является однозначным критерием возможности самопроизвольного протекания реакции в прямом направлении в изобарно-изотермических условиях, поскольку либо оба фактора действуют в пользу процесса

(∆ r Н < 0 и ∆ r S > 0), либо действующий в пользу процесса фактор является преобладающим и определяет знак ∆ r G Т и направление процесса в целом. Соответственно уменьшение энергии Гельмгольца системы

r F Т = (∆ r U Т T r S Т )< 0 (1.8)

является критерием возможности самопроизвольного протекания процесса в изохорно-изотермических условиях. Соотношение между ∆ r G и ∆ r F такое же, как между ∆ r H и ∆ r U , то есть они отличаются на величину работы расширения:

r G Т – ∆ r F Т = p V = ∆νRT. (1.9)

Если система изолирована, то самопроизвольно в ней могут протекать процессы только в сторону увеличения энтропии , то есть ∆ r S Т > 0, поскольку тепловой эффект в таких системах равен нулю. Это неравенство есть следствие второго закона термодинамики для изолированных систем и является критерием возможности самопроизвольного протекания процессов в таких системах.

Абсолютное значение энергий Гиббса и Гельмгольца определить нельзя, так как невозможно определить абсолютное значение внутренней энергии, поэтому для расчетов (аналогично энтальпии образования – см. выше) используют энергии образования веществ .

Энергией Гиббса образования вещества f G i называется энергия Гиббса реакции образования 1 моля i -го вещества из простых веществ, устойчивых в данных условиях. Энергия Гиббса образования простых веществ, устойчивых в данных условиях, принимается равной нулю. Если при этом все вещества находятся в стандартном состоянии, то энергия Гиббса реакции образования вещества называется стандартной энергией Гиббса образования вещества f G 0 i . Величины ∆ f G 0 298 , i табулированы (см. табл. 1 Приложения).

Энергию Гиббса химической реакции можно рассчитать двумя способами:

1) как изменение функции состояния системы по разности суммарной энергии образования продуктов реакции и суммарной энергии образования исходных веществ:

Δ r G T = ∑ν i Δ f G T , i продуктов − ∑ν j Δ f G T , j исх веществ; (1.10)

2) по уравнению

Δ r G T = ∆ r H T T r S T . (1.11)

Если все исходные вещества и продукты реакции находятся в стандартных состояниях, то по формулам (1.10), (1.11) рассчитывают стандартную энергию Гиббса реакции ∆ r G 0 T .

Связь между Δ r G T и∆ r G 0 T выражается уравнением изотермы Вант Гоффа ,которая для реакции a A(г) + b B(г) + d D(к) = e E(г) + f F(г) имеет вид:

Δ r G Т = r G 0 Т + RT ln(p e E p f F /p a A p b B), (1.12)

где р i – относительные парциальные давления (см. выше) соответствующих газообразных компонентов реакции. Подчеркнем, что в уравнение (1.12) входят только относительные парциальные давления газообразных веществ (вещество D(к) учитывается только при расчете ∆ r G 0 Т ). Если относительные давления всех газов равны 1 (стандартное состояние), то Δ r G Т = ∆ r G 0 Т.

Значение ∆ r G 0 Т для любой температуры Т можно в общем случае рассчитать с использованием справочных данных по уравнению:

r G 0 Т = ∆ r H 0 Т − T r S 0 Т = ∆ r H 0 298 + ∫ ∆ r С 0 p dT + Т r S 0 298 + Т ∫ (∆ r С 0 p /T )dT (1.13)

Для расчетов, не требующих высокой точности, можно в первом приближении принять ∆ r С 0 p = 0 и ∆ r Н 0 Т = ∆ r Н 0 298 и ∆ r S 0 T = ∆ r S 0 298 (см. выше). Тогда для заданной Т

r G 0 Т = ∆ r H 0 298 − T r S 0 298 (1.14)

Для процесса, идущего при T = const и V = const, имеем изотерму реакции в виде

Δ r F Т = r F 0 Т + RT ln(c e E c f F /c a A c b B), (1.15)

где c i – относительные концентрации соответствующих компонентов реакции, численно равные молярным концентрациям, так как c i = с i (моль/л)/1(моль/л).

Если реакции протекают в растворах или в твердых фазах, то в первом приближении ∆V = 0. Тогда, как следует из уравнения (1.9), ∆ r G Т = ∆ r F Т , поэтомудля реакций в идеальных растворах изотерму Вант Гоффа можно записать в виде

Δ r G Т = ∆ r G 0 Т + RT ln(c e E c f F /c a A c b B). (1.16)

(Для реальных растворов вместо молярных концентраций, строго говоря, следует использовать активности − см. )

Пример 7. Рассчитайте стандартную энергию Гиббса химической реакции С(к) + СО 2 (г) = 2СО(г) при 298 К и при 1000 К, считая энтальпию и энтропию реакции не зависящими от температуры. Сделайте вывод о возможности самопроизвольного протекания этой реакции при указанных температурах и стандартных состояниях всех компонентов.

Решение. Учитывая условие задачи, для расчета применим приближенную формулу (1.14) и данные, полученные в примерах 2 и 6.

r G 0 298 = 172,5 – 298· 175,66·10 −3 = 120,15 кДж, то есть ∆ r G 0 298 > 0;

r G 0 1000 = 172,5 – 1000· 175,66· 10 −3 = −3,16 кДж, то есть ∆ r G 0 1000 < 0.

Таким образом, при 298 К и стандартных состояниях веществ самопроизвольное протекание указанной реакции в прямом направлении невозможно (энтальпийный фактор не способствует самопроизвольному протеканию прямой реакции и определяет знак энергии Гиббса реакции при низких температурах). При высоких температурах определяющим становится энтропийный фактор реакции, он определяет отрицательное значение энергии Гиббса реакции при 1000 К и, следовательно, возможность самопроизвольного протекания реакции при этой температуре и стандартных состояниях компонентов.

Пример 8. Определите, при каком соотношении парциальных давлений газообразных компонентов реакции С(к) + СО 2 (г) = 2СО(г) возможно ее протекание в прямом направлении при 298 К?

Решение. Возможность самопроизвольного протекания данной реакции в прямом направлении при 298 К определяется неравенством Δ r G 298 < 0, в котором энергия Гиббса реакции рассчитывается по уравнению изотермы Вант Гоффа (1.12). Имеем: Δ r G 298 =[∆ r G 0 298 + RT ln(p 2 CO /p CO 2)] < 0. Подставляя вместо ∆ r G 0 298 , величину, найденную в Примере 7, получаем неравенство:

120,15 + 8,31·10 −3 ·298 ln(p 2 CO /p CO 2) < 0.

Найдем соотношение давлений СО и СО 2 , при котором это неравенство выполняется. Имеем: ln(p 2 CO /p CO 2) < −48,5, откуда p 2 CO /p CO 2 < 10 −21 .

Пример 9. Определите температурную область самопроизвольного протекания реакции С(к) + СО 2 (г) = 2СО(г) при стандартных состояниях компонентов.

Решение. Реакция может протекать самопроизвольно при стандартных состояниях компонентов в определенной области температур, для которых ∆ r G 0 Т < 0.Чтобы найти эту область температур нужно определить граничную температуру (температуру равновесия), при которой значение ∆ r G 0 Т меняет знак, то есть необходимо решить неравенство относительно Т :

r G 0 Т = ∆ r H 0 298 + ∫ Т 298 ∆ r С 0 p dT + Т r S 0 298 + Т Т 298 (∆ r С 0 p /T )dT < 0.

Если пренебречь зависимостью ∆ r H 0 и ∆ r S 0 от температуры, то граничную температуру (температуру равновесия) можно определить из приближенного неравенства ∆ r G 0 Т = ∆ r H 0 298 − T r S 0 298 < 0. Подставляя в это выражение значения ∆ r H 0 298 и ∆ r S 0 298 , рассчитанные в примерах 2 и 6, получаем: (172,5 – Т · 175,66·10 −3) < 0. Откуда Т > 982 К. Верхним пределом искомой температурной области является предел существования наименее устойчивого компонента реакции, который находится из справочных данных, например .

Вещество Температурный интервал, К

Напомним, что второй закон термодинамики определяет критерии самопроиз­вольного протекания процессов в изолированных системах. Однако, подобные условия (отсутствие обмена энергией и веществом с окружающей средой) реализуются сравнительно редко. Поэтому представляется важным сформулировать подобного рода критерии для закрытых систем, где возможен обмен энергией с окружающей средой. Для этого нам потребуется определить две новые функции состояния – энергию Гельмгольца и энергию Гиббса.

Работа процесса в общем случае, как это уже говорилось, зависит от пути процесса. Работа неравновесного процесса меньше, чем работа равновесного процесса, протекающего между теми же начальным и конечным состояниями системы. В самом деле, исходя из уравнения первого закона термодинамики (I, 7а) и уравнения (II, 17а), получаем в общем случае:

δW = dQ – dU £ TdS – dU (III, 1)

Величина правой части этого уравнения не зависит от того, равновесен или неравновесен процесс. В случае равновесного процесса:

dW = dW равн. = TdS – dU (III, 2)

Для неравновесного процесса:

dW < TdS – dU (III, 3)

Сравнивая уравнения (III, 2) и (III, 3), получаем:

dW равн. > dW

Таким образом, работа равновесного процесса максимальна.

Максимальная работа не зависит от пути, а определяется лишь начальным и конечным состояниями системы. Так, при S = const (равновесный адиабатный процесс)

dW = –dU и W макс. = – (U 2 – U 1) (III, 4)

т. е. величина максимальной работы определяется изменением внутренней энергии системы.

Интегрируя при постоянной Т уравнение (III, 2), получаем:

W макс. = T (S 2 – S 1) – (U 2 – U 1) (III, 5)

W макс. = (U 2 – TS 2) +(U 1 – TS 1 ) (III, 6)

Выражения, стоящие в скобках, являются функциями состояния системы. Введя в уравнение (III, 6) обозначение

F º U – TS (III, 7)

получаем (при T = const)

W макс. = – F 2 + F 1 = – (F 2 – F 1) = –DF (III, 8)

где F – функция состояния, называемая энергией Гельмгольца (в настоящее время для обозначения энергии Гельмгольца также используется символ А ). Таким образом, максимальная работа при изохорно-изотермических равновесных процессах равна убыли энергии Гельмгольца системы.

Переписав уравнение (III, 3) в виде

U = F + TS

можно рассматривать внутреннюю энергию, как состоящую из двух частей – свободной энергии F и связанной энергии TS. Лишь часть внутренней энергии – свободная энергия, которую система отдает вовне при T = const , может превратиться в работу (условием для такого превращения является равновесность процесса; в неравновесном процессе свободная энергия частично или полностью переходит в теплоту). Другая часть внутренней энергии – связанная энергия – при изменении системы, если Т = const , не дает работы, а переходит только в теплоту.


Энтропия есть, таким образом, фактор ёмкости связанной энергии.

Для процессов, протекающих с изменением температуры (T const ), деление внутренней энергии на свободную и связанную не может быть проведено и, следовательно, сами термины не имеют общего значения. Поэтому будем пользоваться для функции F названием энергия Гельмгольца.

Полный дифференциал функции F можно получить, дифференцируя уравнение (III, 7):

dF º dU TdS SdT (III, 9)

Сопоставив это уравнение с уравнениями (III, 2) и (III, 3), получим в общем виде:

dF £ -SdT – dW (III, 10)

Откуда при Т = const

(dF) T £ –dW (III, 11)

F 2 – F l = DF < W; –(F 2 – F 1 ) > W (III, 12)

Выражение (III, 12) отражает уже известное нам положение, что работа неравновесного процесса меньше работы равновесного процесса.

Если при равновесном процессе совершается только работа расширения (dW = PdV), то из уравнения (III, 10) получаем:

dF = -SdT – PdV (III, 13)

Это выражение является полным дифференциалом функции F при переменных V и Т.

Полагая T = const и V = const , а также при условии отсутствия всех видов работы (dW = 0) , получаем из уравнения (III, 10):

(F ) V, T £ 0 (III, 13а)

т. е., энергия Гельмгольца системы, находящейся при постоянных V и Т не изменяется при равновесных процессах, при неравновесных процессах ее значение убывает.

Так как система, в которой протекают (и могут протекать) только равновесные процессы, бесконечно близка к равновесию, то сформулированные свойства энергии Гельмгольца позволяют судить о том, находится ли данная система в равновесии или нет. В последнем случае направление неравновесного процесса определяется убылью энергии Гельмгольца при постоянных температуре и объеме системы.

Условия, которым должны удовлетворять процессы, для того чтобы по изменениям величины F можно было судить о направлении этих процессов, иные, чем для энтропии. Для энтропии это были условия постоянства внутренней энергии и объема (изолированная система), для энергии Гельмгольца это условие постоянства объёма и температуры – легко измеримых параметров системы. Энергия Гельмгольца, являясь производным понятием по отношению к энтропии, представляет собой практически более удобный критерий направления процессов, чем энтропия.

Изложенные соображения могут быть выражены следующим положением: энергия Гельмгольца системы, находящейся при постоянных объёме и температуре, уменьшается при неравновесных (самопроизвольных) процессах. Когда она достигает минимального значения, совместимого с данными V и Т, система приходит в равновесное состояние.

Энергия Гельмгольца (изохорно-изотермический потенциал) является характеристической функцией, если независимыми переменными выбраны объем и температура . Полный дифференциал энергии Гельмгольца для простых систем записывается в виде:

а в случае обратимых процессов как

Полагая V = const

Функция А = f (T ) при V = const является убывающей, а кривая зависимости энергии Гельмгольца от температуры при постоянном объеме обращена выпуклостью вверх (рис. 4.3). Мерой убыли энергии Гельмгольца при повышении температуры вещества является энтропия .

Полагая Т = const , из уравнения (4.57) получаем

Функция А = f (V ) при T = const также является убывающей, но кривая зависимости энергии Гельмгольца от объема при постоянной температуре обращена выпуклостью вниз (рис. 4.3).

Рис.4.3. Зависимость энергии Гельмгольца от температуры и объема.

При протекании обратимых процессов в сложных системах, способных выполнять кроме работы расширения и другие виды работы (полезную работу), справедливо:

Если процесс изотермический (Т = const ), то

Итак, в обратимом изотермическом процессе убыль энергии Гельмгольца равна максимальной (полной) работе, производимой системой . В этом заключается основной смысл введения новой функции А : через изменение функции состояния в изотермических условиях можно определить максимальную работу в обратимом процессе.

Если обратимый процесс протекает в изохорно-изотермических условиях , то

В обратимом изохорно-изотермическом процессе убыль энергии Гельмгольца равна максимальной полезной работе .

Рассмотрим систему и окружающую среду, которые находятся в тепловом равновесии: Т сист. = Т ср. . Пусть в системе протекает процесс, в результате которого в окружающую среду переходит количество теплоты δQ cр. . Тогда общее изменение энтропии dS общ (ее называют изменением энтропии вселенной ) равно:

Поскольку теплота уходит из системы, то δQ cр. = –δQ сист. , поэтому

Но dS общ. положительно для любого самопроизвольного (необратимого) процесса и равно нулю при равновесии. Следовательно,

Значение неравенства (4.63) состоит в том, что оно выражает критерий самопроизвольного изменения только через свойства системы . Если система теряет теплоту при постоянном объеме, то

δQ V = dU ,

поэтому соотношение (4.63) принимает вид:

В последнем соотношении нижний индекс опущен, поскольку все величины относятся к системе. Следует понимать, что dS – это изменение энтропии системы, а ‑dU /T – изменение энтропии среды: суммарная энтропия стремится к максимуму.



Поскольку в конечном итоге рассматривается изохорно-изотерми-ческий процесс, то

Следовательно, при протекании процессов в изохорно-изотермических условиях должно выполняться неравенство

где знак равенства относится к обратимым процессам, а знак неравенства – к необратимым.

Если в обратимом процессе энтропия системы увеличивается, то максимальная работа больше, чем –ΔU , так как T ΔS положительно. Система не изолирована и поэтому в нее может поступать теплота, служащая источником энергии для производства работы. Если же ΔS отрицательно, то теплота должна выделяться из системы, чтобы привести к общему увеличению энтропии (энтропии вселенной). Поэтому не все изменение внутренней энергии может перейти в работу и W max < (–ΔU ).